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Abstract

Human hand motions are rich and varied, and track-
ing them represents a key problem in computer vision. In
this project, we investigate hand tracking and interaction
via a real-time AR (augmented reality) piano playing app.
Using only input rgb frames from a webcam, we utilize
Google’s MediaPipe Hands API to predict 3D hand key-
point positions in real-time. To calibrate user-piano inter-
action, we leverage ”ArUco” markers to compute homo-
graphies between uv piano texture space and xy camera
image space. Finally, we implement a simple threshold-
based key press detector and play sounds from a library
of piano note recordings. Our system runs at 12 frames-
per-second on commodity laptops, achieving 81% accuracy
(within an error threshold of 20 pixels) on hand keypoint
detection tasks.

1. Introduction

1.1. Problem Statement

Real-time human pose recognition has a variety of appli-
cations, including virtual and augmented reality, medicine,
robotics, and many other fields. In particular, hand tracking
is a necessary implementation for many human-computer
interfaces. Although early hand pose recognition systems
tracked human hand motion through data gloves or col-
ored markers, purely vision-based methods have recently
become more viable [7].

We have chosen to investigate the musical applications of
real-time human hand pose recognition, specifically with re-
spect to augmented reality (AR) piano playing. Augmented
reality provides a platform for beginner piano players to
learn how to play piano with more targeted teaching ap-
proaches, and without the need to purchase an expensive
musical instrument. In addition, AR piano playing may al-
low beginners to practice piano without torturing the ears
of the rest of us humans. Piano playing is a straightforward
iteration of the hand pose tracking problem, one that can be
extended to other, more complex problems; in other words,
piano playing is a good entry point into this problem.

1.2. Plan for Approach

To develop an AR piano playing application, three main
components are needed: (1) Hand pose recognition, (2) aug-
mented reality calibration, and (3) key press detection. The
final system takes as input a live video stream from a web-
cam. The input is used to determine hand keypoint positions
and to instantiate an AR piano, using specialized markers
for calibration. The hand coordinates and the keyboard po-
sitions are then used in the state estimation step. During
state estimation, the hand pose is transformed from camera
image space onto the piano texture space and then used to
detect piano key press (which finger is pressing a key, and
which key is pressed). The end-to-end flow of the system is
shown in Figure 1.

2. Background/Related Work
In this section, we describe the relevant background as

well as our initial explorations in hand pose recognition,
augmented reality, and piano playing interfaces.

2.1. Hand Pose Recognition

Previous works in human hand pose recognition that we
explored are Convolutional Pose Machines, OpenPose, and
MediaPipe Hands. All of these methods are open source
systems which have been trained on large annotated pose
datasets, including the MPII Human Pose Dataset [10] and
the CMU Panoptic Studio Dataset.

2.1.1 Convolutional Pose Machines

Convolutional Pose Machines (CPM) is an open source
machine learning framework produced by The Robotics
Institute at Carnegie Mellon University. CPM harnesses
GoogLeNet to analyze image sensor data and produce hu-
man pose estimates by generating response/belief maps of
the key points in each image. The CPM has been shown
to have high estimation accuracy, enhanced low level fea-
ture extraction, and reduced parameters, making the model
efficient and accurate.

Unfortunately, in the process of trying to implement this
model, we discovered that the code and dependencies are
written in Python 2. Since Python 2 is no longer supported

1



Figure 1. System flowchart

and the versions of this code are therefore not stable, we
decided not to train the CPM model.

2.1.2 OpenPose

OpenPose [5] is the first open-source system for multi-
person detection of human body, hand, and face keypoints.
Given an input 2D RGB image, OpenPose uses a CNN to
first predict 2D vector fields encoding the location and ori-
entation of limbs (denoted ”Part-Affinity Fields”), before
predicting final keypoint confidence maps from this inter-
mediate representation. In many ways, OpenPose repre-
sents follow-up work to Convolutional Pose Machines, with
both projects having been produced by Carnegie Mellon
University and relying on the CMU Panoptic Dataset. Here,
we focus specifically on its hand detection capabilities. As
part of our initial exploration, we built OpenPose on Mac
(CPU only) and ran it on the included dataset images, along
with “in-the-wild” images from online.

While OpenPose achieved reasonable (qualitative) key-
point prediction on dataset images (e.g. “Baseball”), it did
not successfully generalize to all in-the-wild images (e.g.
“Piano”), as shown in Fig. 2. In general, OpenPose pipeline
is not well-suited for cases where only part of the body (e.g.
arms of a pianist) is visible. Additionally, we found the
runtime on CPU to be impractically slow: a single frame
of “Baseball” took nearly 30 seconds to process. Overall,
though very well-documented, OpenPose is poorly suited
for our task of real-time piano playing in AR, as the focus
on multi-person detection introduces unnecessary overhead
for single-person hand detection.

2.1.3 MediaPipe Hands

MediaPipe [9] is an open source machine learning library
provided by Google, specializing in processing live and

Figure 2. Initial results from OpenPose. Model performs well on
included dataset images (top) but fails to generate output when full
body is not included (bottom)

streaming media. A part of the MediaPipe library, Medi-
aPipe Hands, achieves real time hand motion recognition
(∼30fps on CPU) by using the costly detection process only
when needed (e.g. when a new hand appears) and using a
less computationally expensive feature tracking algorithm
to track the keypoints.

The outputs available from this algorithm are: (1) hand-
edness (right hand or left hand), (2) 3D coordinates of each
of the 21 keypoints in the image frame, and (3) estimated
3D coordinates corresponding to each keypoint in the world
frame, with the world origin placed at the approximate ge-
ometric center of the hand. The 3D world coordinates have
high accuracy: there was an error of ∼1cm between the fin-
ger length calculated from the 3D keypoints generated by
MediaPipe and the finger length measured in the real world.

Figure3 shows two screenshots from real-time video de-
tection. The keypoint detection accuracy is high when oc-
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Figure 3. Preliminary results from MediaPipe Hands. Model per-
forms well when there are no occlusions (left) but fails to accu-
rately label the position of the thumb during cross over motion
(right)

clusions are small. However, the detection struggles to ac-
curately identify the position of the thumb when there are
occlusions. This is an aspect that must be improved be-
cause occlusion of the thumb is common in piano playing
when finger cross overs occur.

2.2. Augmented Reality

ARKit, ARCore, and OpenCV are among the most
widely used AR application development tools. In this sec-
tion, we discuss the characteristics of each of these tools.

ARKit [3] is a toolkit created by Apple to assist devel-
opers in creating AR applications, especially for iOS de-
vices. ARKit’s main advantage is it’s ease of use. However,
ARKit only supports development for iOS applications on
relatively new Apple devices unless it is used along with
Unity’s AR Foundation framework [1]. This is inconve-
nient for this project because the language officially sup-
ported with Unity is C#, while MediaPipe Hands library is
only available with Python, C++, and JavaScript.

ARCore is an augmented reality SDK developed by
Google [2]. Unlike ARKit, it supports multiple environ-
ments including Android, iOS, Unity, and Unreal Engine.
As can seen by the supported platforms, ARCore is com-
monly used in 3D game development, and features unique
functionalities like predicting lighting from camera input
and applying natural lighting to AR objects generated in the
screen.

Another popular tool used for AR is OpenCV. While
ARKit and ARCore are SDKs built specifically for AR ap-
plication development, OpenCV’s functionalities are more
broad in scope. Consequently, while there are fewer pre-
built, AR-specific functionalities, the major advantage of
using OpenCV is its ability to be highly customized and
its ease of incorporation into a variety of development envi-
ronments.

2.3. Piano Key Detection

Piano key detection has been explored in several works,
often in the context of end-to-end systems for virtual pi-
ano playing. Most notably, Barehanded Music [8] presents

a data-driven approach for tracking fingers and detecting
presses; conveniently, it also targets AR applications (but
uses a depth sensor in addition to standard rgb cameras).
The key press detection itself is performed by an SVM clas-
sifier that takes, as input, the trajectories of hand joints. To
train their classifier, the authors created a custom dataset of
7200 rgb-d images, consisting of the most common finger
articulations for piano playing. Their proposed data-driven
approach achieves over 90% accuracy on finger press detec-
tion tasks (with a small training set), but unfortunately, the
authors did not make their dataset available online.

3. Technical Approach
In this section, we discuss the approaches we took to

solve each of the three subproblems: hand pose recogni-
tion, augmented reality calibration, and piano key press de-
tection.

3.1. Hand Pose Recognition

In our initial explorations, we discovered that OpenPose
is too computationally expensive to run real-time on CPU.
It also focuses on full body pose recognition, requiring ad-
ditional training and manipulation to apply to our problem.
Although both MediaPipe and OpenPose struggled with oc-
clusions, we selected MediaPipe as our hand pose recogni-
tion method due to the availability of a package specific for
hand recognition, making additional training unnecessary.
MediaPipe’s computational efficiency also makes real-time
tracking possible, and is thus the optimal method for our
piano playing application.

Specifically, MediaPipe hands leverages a convolutional
feature extractor (representation learning), following by
separate branches to predict 3D locations of keypoints along
with presence of hands. The full network (during run-time)
is shown in Figure 4. During training, the network takes in
rgb images of hands labeled with keypoint locations, gener-
ated from both real-world photographs and photo-realistic
synthetic renderings in order to improve generalizability.

In practice though, the network details are abstracted
away by the MediaPipe API. We call the API to retrieve
predicted 3D locations of 21 hand keypoints, which repre-
sents an update to our pipeline’s internal state. These 3D
locations are then processed for the end-goal of piano key
press detection, as well as to be displayed on the screen.

3.2. Augmented Reality

Although ARKit and ARCore are both attractive options
for AR application development, these tools are most bene-
ficial in developing applications that makes extensive use of
3D objects and device motion. Because the only AR object
currently required for our project is a stationary, flat key-
board placed onto a tabletop, the advanced features avail-
able in ARKit and ARCore are not necessarily needed. Ad-
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Figure 4. MediaPipe Hands architecture details, (left) the network features a convolutional feature extractor, (right) the 21 hand keypoints
regressed by the network.

ditionally, MediaPipe and OpenCV are both supported on
Python, making OpenCV an ideal choice for out applica-
tion. Thus, Python OpenCV’s ARUco module is selected as
the method to develop the AR component of our system.

The first step is piano initialization. First, the user places
a calibration paper on a dark colored table. The paper has
four ARUco markers on each corner, and these four markers
define a bounding box where the AR piano is placed. Four
corners of the bounding box correspond to each of the four
corners of the piano image, and these correspondences are
used to compute a homography (projective transformation)
matrix that transforms the rectangular piano image to fit
the bounding box as it appears in the webcam image frame
(i.e. the homography matrix H transforms the piano texture
frame to the webcam image frame).t xwebcam

t ywebcam

t

 = H

upiano

vpiano
1

 (1)

where t is the homogeneous coordinate to be divided
by after applying the transformation. Using the computed
homography, an AR piano appears in the webcam image
frame. Once this step is complete, the location of the piano
remains stationary, and the calibration paper is removed.
The homography matrix is the second input to the piano
key press detection algorithm.

In order to overlay the user’s hands over the AR piano,
we assume that there is enough brightness contrast between
the user’s hands and the flat surface on which the user places
the calibration paper. To identify the user’s hands, Otsu’s
method [4] for binary segmentation is used. This method
calculates the foreground and background variances to find
a threshold using the following steps: (1) calculate weighted
mean for background and foreground pixels, (2) calculate
pixel variance and then (3) take the sum of the forward
and background variances multiplied by associated weights.
These equations are iterated through to find the maximum
variance σ2(t). To minimize intra-class variance, Otsu’s
method maximizes inter-class variance. The threshold val-
ues computed by Otsu’s method are then used to generate a
mask segmenting the user’s hands from the rest of the web-
cam image. Using this mask, along with the webcam frame

Figure 5. AR framework. Homographic transformation from rect-
angular piano texture frame to webcam image frame, AR piano
initialization, and hand masking

position of the AR piano, the AR piano is only displayed in
the locations where the piano position and the hands do not
overlap, thus, allowing the user’s hands to be displayed over
the piano. In this project, we use a black tabletop for test-
ing, but the program can be manipulated to support white
tabletops by inverting the mask. The process and results of
the AR component are summarized in Figure 5.

3.3. Piano Key Detection

Initially, we sought to implement the data-driven ap-
proach for piano key press detection proposed in [8], but
due to inaccessibility of a dataset, we settled on a sim-
ple threshold-based approach in the piano texture space.
Namely, given the homography matrix H from the ARUco
marker calibration, we invert H to compute the inverse pro-
jection. t upiano

t vpiano
t

 = H−1

xwebcam

ywebcam

1

 (2)

where once again, we divide by the homogeneous coordi-
nate t afterwards. We compute the projection of all five
predicted fingertip keypoints onto texture space and visual-
ize the result as five colored circles overlaid on the piano
texture. An example projection is shown in Figure 6.

For the piano key press detection itself, we qualitatively
observe that a ’downwards press’ motion translates well to
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Figure 6. Fingertip keypoint projection from image to texture
space. (top) webcam image showing all five fingers laid over AR
piano, (bottom) corresponding projected fingertip locations over-
laid on piano texture.

an increase in the v (vertical) coordinate in uv texture space.
Thus, we track sharp increases in the v coordinate to detect
whether a ’key press’ state event should be triggered. For
simplicity, if v rises above a certain threshold value (in prac-
tice, we use v ≥ 0.5vmax), we trigger a ’key press’. To pre-
vent the same note from being rapidly and excessively trig-
gered, we require the finger to return back to resting state
(v < 0.5vmax) before that note can be played again.

Since we have a direct map of fingertip keypoint posi-
tion to note on the piano, once a key press is detected, we
simply play the corresponding note. We instantiate a li-
brary of piano note recordings (from open source repository
freesound.org [6]) to be played during runtime. Addition-
ally, to prevent the audio from lagging video, we leverage
separate audio and video processing threads.

4. Experiments

To validate our implementation, we ran quantitative ex-
periments measuring the accuracy of predicted fingertip
keypoint locations, along with qualitative demos suggest-
ing how a user might interact with our system. The results
are provided in this section.

4.1. Quantitative Results

Hand pose recognition performance was evaluated by
calculating what percentage of fingertip keypoints correctly
identified the true position of the fingertip. The estimated
keypoint is considered correct if the keypoint lies within a
certain threshold of the ground truth labels from the CMU
Panoptic dataset.

Although the dataset for MediaPipe Hands has not been
published, the CMU Panoptic Hands dataset is a labelled
dataset corresponding to the outputs of MediaPipe Hands.

Figure 7. Varying threshold lengths of 10, 20, 30, 40, 50, 60, 70,
80, and 100 displayed for scale on CMU Panoptic dataset image.
Threshold of 10 has much smaller tolerance for errors.

In order to ensure that the hand recognition algorithm en-
capsulated our required precision, we ran the MediaPipe al-
gorithm on 15,000 images from the CMU Panoptic dataset.
These images encapsulated hands in a variety of conditions,
including varied light, poses, and skin color. The CMU
Panoptic Hands dataset includes labelled predictions in the
form of 21 keypoints for each hand. After running Medi-
aPipe Hands on each image, we extract which hand the out-
putted keypoints belongs to and calculate the mean absolute
error between the predicted keypoints and ground truth val-
ues. For each keypoint, we classify the point as either (1)
accurate or (2) inaccurate based on whether the calculated
mean absolute error lies below a determined threshold and
track the number of inaccurately predicted keypoint. We
used this number of calculate the accuracy of MediaPipe
Hands as a keypoint predictor. A threshold of 30 pixels
would indicate the point lying within an error rate of one
key, which is the largest tolerable error for our program.

Because the piano that are demoing has eight keys, each
key is approximately the length of the 30 pixel threshold.
However, webcam fidelity can vary and the end goal for
this system would be to model a larger piano on this screen,
meaning smaller keys and thus less room for error.

With an error threshold of 30, we reach a keypoint ac-
curacy of 84%, meaning that 84% of predicted keypoints
lie within 30 pixels of the ground truth pixel, and 16% of
predicted keypoints lie outside the 30 pixel radius. Even an
error threshold of 20 has an acceptable accuracy percent-
age of 81%, which leads to the conclusion that in real time
this hand pose recognition model will serve our purposes
for gesture recognition.

To evaluate the true performance of the model, we calcu-
lated the accuracy percentage based on varying thresholds.

Figure 8 shows the accuracy percentages as the thresh-
old changes and Figure 7 visualizes the threshold sizes on
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Figure 8. Effect of threshold on MediaPipe keypoint accuracy,
which shows how close to ground truth most predicted points lay.

an example test image. According to this data, as long as
the threshold is greater than or equal to 20 pixels (with a
corresponding accuracy of 81%), this model would likely
be a good fit for our piano key detection use.

However, as is demonstrated in Figure 7, the hands used
to evaluate this dataset are fairly small, making the model
predictions more inaccurate than when used to find the key-
points for hands that take up most of the image space, as is
the case in our particular usage case.

4.2. Qualitative Results

Qualitative performance of finger tip tracking is evalu-
ated through an application demo using a realistic device
and camera angle. Figure 10 shows excerpts from the demo.
The position of the middle finger tip in both the webcam im-
age frame and the piano texture frame (displayed on top left
corner of each image) are marked with a red dot. For each of
the image shown, hand pose detection correctly determines
the position of the middle finger tip in the webcam image
frame, and the corresponding transformed coordinates (in
piano texture frame) lies on the correct key.

Finally, to demonstrate the end-to-end capabilities of
our implementation, we task a user with playing a simple
melody. We perform a trial run with audio feedback dis-
abled, such that the user can only rely on their intuition to
play the melody. To simplify the task further, we disable all
key press activations except for the middle finger. The re-
sulting audio after pitch tracking is shown in Figure 9. Even
with audio feedback disabled, the user played 12/13 notes
correctly – the only error being a missing note between the
7th and 8th note. In general, the system is able to accu-
rately identify which piano key the finger is hovering over,
but the (threshold-based) key press detector itself remains
finicky. See the supplementary material for the full video
with audio.

Figure 9. Pitch tracked result from playing a simple melody (Mary
Had a Little Lamb) without audio feedback.

5. Conclusion
In this project, we developed a prototype of an AR piano

playing application using real-time 3D hand pose tracking
with MediaPipe Hands, AR with OpenCV ARUco modules
and piano key press detection using a threshold-based de-
tector.

Our AR piano playing prototype achieved 81% accuracy
at recognizing each hand keypoint. We have determined
that for this specific usage, especially with respect to teach-
ing beginner piano (which requires only a shortened version
of the full keyboard), this accuracy is a decent approxima-
tion of a hand’s real coordinates.

With advancements in motion-controlled devices and
technologies, real-time hand pose tracking, especially
methods that do not require special equipment like depth
sensors, has gained significance. However, most existing
works in hand pose recognition that only require RGB in-
formation are too computationally expensive for real-time
tracking. Although MediaPipe Hands achieves real-time
tracking from RBG input, accuracy tends to reduce when
hands are at certain angles or when fingers are unnaturally
posed, despite being trained specifically on hand poses.
Overall, real-time pose recognition in the absence of depth
information is a still evolving area of research.

Specifically, MediaPipe and OpenPose have been able to
achieve better accuracy due to the large amount of labelled
data that each of these models has access to. Finding an un-
supervised learning method to improve keypoint prediction
in computer vision would go a long way.

Future ideas to improve AR piano playing include:
adding support for chord playing (play multiple notes at
once), incorporating visual feedback (animation to show
which key is depressed) for a more immersive experience,
and offering a way to import sheet music into the AR envi-
ronment.
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Figure 10. Results of finger tracking: middle finger keypoint location in webcam frame and piano texture frame when finger is placed on
keys D (left), G (middle), and C (right)
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