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1. Introduction 

The main objective of this project is to identify, in real-time, the note being played on a piano. 

An audio file of piano notes being played are inputted into an adaptive filtering algorithm 

which compares the input signal to each note’s ideal signal models and predicts the note being 

played through a probabilistic approach. The oscillator model is used to model the audio 

signals, and the filter used is the coupled oscillator feedback filter.  

 

2. Model Generation and Visualization 

An oscillator model used to model the audio signals is developed. The ideal oscillator 

position (angle in radians) θ at any instance in time k (up to K) and the observation signal Yk, 

or the real audio signal with noise, are modeled as follows: is described as follows:  

 

Ideal Oscillator: 𝜃𝑘+1 = (𝜃𝑘 + 𝜔∆𝑡) %2𝜋 (1) 

Observation Signal: 𝑌𝑘 = ℎ(𝜃𝑘) + 𝜎𝑤𝑊𝑘 (2) 

 

Where ω is the signal frequency in rad/s and Δt is the time step size, ℎ(𝜃𝑘) is the observation 

function, Wk is the normally distributed noise, 𝜎𝑤 is the noise strength (𝜎𝑤 ≥ 0), and θ is 

assumed to have an initial value of θo at k = 0 selected randomly from an uniform distribution 

[0, 2𝜋]. 

 

First, the observation function is assumed to take the following form where c is a constant: 

 

Observation Function: ℎ(𝜃𝑘) = 𝑐𝑠𝑖𝑛𝜃  

 

Figures 1 and 2 showing plots of the ideal oscillator and the observation signal are obtained using 

𝜔 = 2𝜋, ∆𝑡 = 0.01, 𝜎𝑤 = 0.1, 𝑐 = 1.0,𝐾 = 500 , and shows the change in the ideal and 

observed oscillator’s behavior with respect to time. The observation signal’s behavior is 

similar to that of the ideal signal, and varies according to the normally distributed noise. 

Figures 3 and 4 show the occurrence of θo and θ50 after the system is ran 𝑀 = 100 times. 

The occurrences of θ values are generally uniform. 
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(a) Time Trace of Ideal Oscillator (b) Ideal and Observation Signals 

  

(c) Histogram of Occurrence of θo (d) Histogram of Occurrence of θ50 

Figure 1: Behavior of the Oscillator Model and the Observation Signal 

 

3. Feedback Particle Filter Algorithm 

In this step, assume that only the observation signal is available (the ideal signal the observation signal 

represents is unknown). The goal of this section is to predict θk given Yk with N oscillators. Each of 

the N oscillators are initialized with a frequency 𝜔0
𝑖  and a position 𝜃0

𝑖  randomly selected 

from uniform distributions with ranges [𝜔0 − 𝛿,𝜔0 + 𝛿]  and [0, 2𝜋] , respectively. The 

FPF algorithm is applied to each of the N oscillators to predict the ideal oscillator the 

observation signal represents. The oscillators evolve in the following way: 
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FPF: 𝜃𝑘+1
𝑖 = 𝜃𝑘

𝑖 + 𝜔𝑖∆𝑡 + 𝐾𝑖 (𝑌𝑘 −
ℎ(𝜃𝑘

𝑖 ) + ℎ̂

2
)
1

𝜎𝑤2
  %2𝜋 (3) 

Where 𝛿 = 0.1 , ℎ̂ =
1

𝑁
∑ ℎ(𝜃𝑘

𝑖 )𝑁
𝑖=1   and 𝐾𝑖  is the gain. The gain is calculated in the 

following algorithm: 

 

Algorithm 1: Calculate the Gain in FPF Algorithm 

Input: {𝜃𝑖}𝑖=1
𝑁 , {h(𝜃𝑖)}𝑖=1

𝑁   

Output: {𝐾𝑖}𝑖=1
𝑁  

ℎ̂ =
1

𝑁
∑ℎ(𝜃𝑖)

𝑁

𝑖=1

 

𝐴11 =
1

𝑁
∑𝑠𝑖𝑛2(𝜃𝑖)

𝑁

𝑖=1

 

𝐴22 =
1

𝑁
∑𝑐𝑜𝑠2(𝜃𝑖)

𝑁

𝑖=1

 

𝐴12 = 𝐴21 = −
1

𝑁
∑𝑠𝑖𝑛(𝜃𝑖)𝑐𝑜𝑠(𝜃𝑖)

𝑁

𝑖=1

 

𝑏1 =
1

𝑁
∑𝑐𝑜𝑠(𝜃𝑖)(ℎ(𝜃𝑖
𝑁

𝑖=1

) − ℎ̂) 

𝑏2 =
1

𝑁
∑𝑠𝑖𝑛(𝜃𝑖)(ℎ(𝜃𝑖
𝑁

𝑖=1

) − ℎ̂) 

A = [[𝐴11, 𝐴12], [𝐴21, 𝐴22]] 

b = [𝑏1, 𝑏2] 

c = 𝐴−1𝑏 

𝐾𝑖 = −𝑐1 sin(𝜃
𝑖) + 𝑐2 cos(𝜃

𝑖)  𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 

 

Figures 5 to 8 shows the results of the FPF algorithm. As more time elapses, the N oscillators 
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converge to the true oscillator’s position. At k=0, the N oscillator’s prediction of the true 

oscillator’s position is random, as shown in Figure 6. For larger values of k, such as 100, the 

prediction becomes more accurate, as shown by Figure 8. 

 

  
(a) Time Trace of True and Predicted 

Oscillators 

(b) Histogram of Distribution of Oscillators at 

Time k=0 

  

(c) Histogram of Distribution of Oscillators at 

Time k=10 

(d) Histogram of Distribution of Oscillators at 

Time k=50 

Figure 2: Results of the FPF Algorithm 

 

4. Empirical Studies on Performance of FPF Algorithm 

In this section, the performance of the FPF algorithm is investigated when: (1) the number 

of oscillators N is varied, (2) there is uncertainty in the ideal oscillator model, and (3) there 

is uncertainty in the observation model. In order to quantify the performance, the error of the 

algorithm is defined in the following way: 
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Error: 𝑒𝑛 =
1

𝑛
∑[(

1

𝑁
∑sin(𝜃𝑘

𝑖 ) − sin(𝜃𝑘)

𝑁

𝑖=1

)

2

+ (
1

𝑁
∑cos(𝜃𝑘

𝑖 ) − cos(𝜃𝑘)

𝑁

𝑖=1

)

2

]

𝑛−1

𝑘=0

 (4) 

 

4.1 Effect of the Number of Oscillators N 

The effect of the number of oscillators is investigated by plotting the error with respect to the 

number of oscillators n for N = {10, 20, 50, 100, 200, 500, 1000}. The result is shown in 

Figure 3a. The error was expected to decrease as the number of oscillators used are increased, 

but Figure 3a shows an interesting result suggesting that there is little difference in error 

resulting from a change in the number of oscillators used. 

 

4.2 Effect of Model Uncertainty 

Next, the effect of uncertainty in the ideal signal model is investigated. Practically, 

parameters of the ideal signal model will most likely be unknown, for example, the true 

frequency of the signal, ω, may be unknown. In the algorithm, the N oscillators’ frequencies 

𝜔𝑖  are selected from the range [𝜔0 − 𝛿, 𝜔0 + 𝛿] . It is predicted that the FPF filter will 

function properly when the true frequency of the input signal is within this range. This section 

investigates the FPF algorithm’s performance when the true frequency is outside of this range. 

For this purpose, the ideal oscillator frequency is defined as ω = 2π(1 + α) and 𝛿 = 0.2, 

and the error values are compared for α = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. Results are shown 

in Figure 3b. As expected, the error is higher for higher values of α, or when the actual 

frequency deviates more from the expected range. 

 

4.3 Effect of Observation Model Uncertainty 

For this analysis, the observation function is assumed to take the form: 

ℎ(𝜃) = 𝑐1𝑠𝑖𝑛𝜃 + 𝑐2𝑐𝑜𝑠𝜃. 

To investigate the effect of observation model uncertainty on error, the FPF algorithm will 

be applied to the oscillators assuming that the observation function takes the form as initially 

defined: 

ℎ(𝜃𝑘) = 𝑐0𝑠𝑖𝑛𝜃. 

Let𝑐0 = 1.0  and C = [(𝑐1, 𝑐2)] = [(1.5, 0.0), (0.5, 0.0), (1.0, 0.5)] . The resulting error is 

shown in Figure 3c. (𝑐1, 𝑐2) = (1.5, 0.0)  results in the highest error while (𝑐1, 𝑐2) =

(0.5, 0.0)  results in the lowest error, suggesting that the error becomes high when the 
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observation model coefficient exceeds the coefficient of the true model. The performance 

when (𝑐1, 𝑐2) = (1.0, 0.5)  suggests that the error is not affected significantly when the 

actual signal contains a harmonics not assumed by the algorithm (𝑐2𝑐𝑜𝑠𝜃) if the weight of 

this component is sufficiently low.  

 

  

(a) Time Progression of Error for Different 

Number of Oscillators N 

(b) Effect of Model Frequency Uncertainty 

in Error Progression 

 

(c) Effect of Observation Model  

Uncertainty on Error Progression 

Figure 3: Results of Empirical Studies on FPF Performance 

 

5. Adaptive Filtering 

Results of section 4.3 reveals that the FPF algorithm’s performance is sensitive to how well 

the assumed observation model matches the actual observed signal.  
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5.1 Coefficient Adapting  

This section considers a way to adapt the coefficients of the assumed observation function to 

fit the actual observation function. To better accommodate various observation functions, 

assume the function takes the following form: 

 

Observation Function: ℎ(𝜃) = 𝑐1𝑠𝑖𝑛𝜃 + 𝑐2 sin(2𝜃) + 𝑐3cos (2𝜃) (5) 

 

In every iteration of the FPF algorithm, the coefficients 𝑐1 , 𝑐2 , and 𝑐3  evolves in the 

following way for 𝑛 = 1, 2, 3: 

 

 𝑐𝑛 ↩ 𝑐𝑛 −
𝜀𝑎𝑚𝑝

𝜎𝑤2
𝜕

𝜕𝑐𝑛
(𝑌𝑘 −

1

𝑁
∑ℎ(𝜃𝑘

𝑖 )

𝑁

𝑖=1

)

2

⏟            
𝑒𝑟𝑟𝑜𝑟

 (6) 

Where 𝜀𝑎𝑚𝑝 = 0.1 is the amplitude correction factor. In this approach, the coefficients are 

adjusted along the direction of the error gradient, reducing the error each time the coefficients 

are updated.  

 

5.2 Noise Strength Adapting 

The performance of the FPF algorithm is sensitive to the error strength 𝜎𝑤. The noise level 

may be unknown or varying, and will be adapted in the following way: 

 

 𝜎𝑤
2 ↩ (1 − 𝜀𝑛𝑜𝑖𝑠𝑒)𝜎𝑤

2 + 𝜀(𝑌𝑘 − ℎ̂𝑘)
2 (7) 

Where 𝜀𝑛𝑜𝑖𝑠𝑒 ≪ 1 is the noise correction factor. 

 

6. Application on Real Signals 

In this section, the FPF algorithm is applied to a real piano note signal. Audio files of single 

piano keys played once are inputted to the algorithm and its responses are observed. The 

notes selected as inputs are {𝐶6, 𝐷6, 𝐸6, 𝐹6, 𝐺6, 𝐴6, 𝐵6, 𝐶7}. Prior to entering signals into 

the system, each signal was investigated and reasonable starting values for the observation 

model coefficients (𝑐1, 𝑐2, 𝑐3)  and the noise strength 𝜎𝑤
2   are determined for each notes 

signal. The results are shown in Figure 4. It is observed that the algorithm is able to trace 

each note accurately. 
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(a) C6 (b) D6 

  

(c) E6 (d) F6 

  

(e) G6 (f) A6 
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(g) B6 (h) C7 

Figure 4: Extracted Portions of Time Traces of True Input Signals and FPF Predicted Signals 

{𝐶6, 𝐷6, 𝐸6, 𝐹6, 𝐺6, 𝐴6, 𝐵6, 𝐶7} 

 

7. Note Classification 

The objective of this section is to identify which note is being played given one of the notes 

from {𝐶6, 𝐷6, 𝐸6, 𝐹6, 𝐺6, 𝐴6, 𝐵6, 𝐶7} as input. The FPF algorithm is applied to the input 

signal eight times, each time assuming that the input signal is one of the eight notes: First, 

the algorithm is applied assuming that the input note is C6, the next iteration of the algorithm 

is applied assuming that the input note is D6. This process is repeated until all eight notes are 

considered. Each time, the prediction oscillator attempts to trace the input signal, and the 

prediction signal that is able to trace the input signal most accurately is identified as the note 

played. To quantify how well the input is predicted, the filter exponents {𝜇𝑘
(1), 𝜇𝑘

(2), … , 𝜇𝑘
(8)} 

are initialized at zero and update according to: 

 

Filter Exponents: 
𝜇𝑘+1
(𝑚)

= 𝜇𝑘
(𝑚)

−
1

2𝜎𝑤2
(𝑚)

(𝑦𝑘 − ℎ̂𝑘
(𝑚)
)
2

⏟              
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

 
(8) 

 

Where {ℎ̂𝑘
(1), ℎ̂𝑘

(2), … , ℎ̂𝑘
(8)} are prediction outputs for each of the eight notes, obtained by 

averaging the values of the N oscillators at each time step k. Results when each of the eight 

notes are inputted is shown in Figure 5. Notes {𝐶6, 𝐷6, 𝐸6, 𝐹6, 𝐺6, 𝐴6, 𝐵6} are identified 

correctly. The difference in the exponents of E6 and F6 are small when the input note is F6, 

and C7 is incorrectly identified as B6, suggesting that the algorithm may not be able to 
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reliably distinguish between notes that are a half-note apart. 

 

  

(a) C6 as Input (b) D6 as Input 

  

(c) E6 as Input (d) F6 as Input 

  

(e) G6 as Input (f) A6 as Input 
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(g) B6 as Input (h) C7 as Input 

Figure 5: Exponents for Inputs {𝐶6, 𝐷6, 𝐸6, 𝐹6, 𝐺6, 𝐴6, 𝐵6, 𝐶7} 

 

8. Detecting Change in Note Played 

In order to transcribe a musical piece played on a piano, the algorithm must be able to detect 

a change in the note being played. The objective of this section is to identify a change in the 

note being played in real-time using the exponents values.  

 

8.1 Reducing Reaction Time 

When, for instance, the note C6 is played, the exponent for C6 shows the highest value among 

the eight exponents. Then, when the note changes, for example, to G6, the exponent of G6 

begins to increase. However, the system will not identify the new note G6 until the exponent 

for G6 surpasses the exponent of C6. In order to reduce this delay, a threshold is implemented, 

preventing exponent values to decrease below a certain value. While a higher threshold 

increases reaction speed, it also increases the likelihood of error. An optimum level of the 

threshold is found using a portion of a piano recording of the “ABC Song” where the note 

changes from C6 to G6. To allow the ideal samples to better fit the input signal, the input 

song signal’s amplitude is reduced to 150. Results for 𝜀𝑎𝑚𝑝 = 0.01 , 𝜀𝑛𝑜𝑖𝑠𝑒 = 10
−5 , 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = −106 is shown in Figure 6. The note played changes from C6 to G6 at the red 

vertical line, and the system identifies this change after a delay of approximately 0.263 

seconds. 
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Figure 6: Change in Exponent as the Note Played Changes from C6 to G6 

 

 


